LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mass spectrometry imaging of the in situ drug release from nanocarriers

Photo from wikipedia

Novel label-free MSI strategy was developed for evaluation of the in situ drug release of nanocarriers in sub-organ level. It is crucial but of a great challenge to study in… Click to show full abstract

Novel label-free MSI strategy was developed for evaluation of the in situ drug release of nanocarriers in sub-organ level. It is crucial but of a great challenge to study in vivo and in situ drug release of nanocarriers when developing a nanomaterial-based drug delivery platform. We developed a new label-free laser desorption/ionization mass spectrometry (MS) imaging strategy that enabled visualization and quantification of the in situ drug release in tissues by monitoring intrinsic MS signal intensity ratio of loaded drug over the nanocarriers. The proof of concept was demonstrated by investigating the doxorubicin (DOX)/polyethylene glycol–MoS2 nanosheets drug delivery system in tumor mouse models. The results revealed a tissue-dependent release behavior of DOX during circulation with the highest dissociation in tumor and lowest dissociation in liver tissues. The drug-loaded MoS2 nanocarriers are predominantly distributed in lung, spleen, and liver tissues, whereas the accumulation in the tumor was unexpectedly lower than in normal tissues. This new strategy could also be extended to other drug-carrier systems, such as carbon nanotubes and black phosphorus nanosheets, and opened a new path to evaluate the drug release of nanocarriers in the suborgan level.

Keywords: release nanocarriers; mass spectrometry; drug; drug release; situ drug; release

Journal Title: Science Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.