LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biogeochemical controls of surface ocean phosphate

Photo from wikipedia

High-sensitivity measurements reveal variation in surface ocean phosphate, leading to a new model for ocean nutrient cycles. Surface ocean phosphate is commonly below the standard analytical detection limits, leading to… Click to show full abstract

High-sensitivity measurements reveal variation in surface ocean phosphate, leading to a new model for ocean nutrient cycles. Surface ocean phosphate is commonly below the standard analytical detection limits, leading to an incomplete picture of the global variation and biogeochemical role of phosphate. A global compilation of phosphate measured using high-sensitivity methods revealed several previously unrecognized low-phosphate areas and clear regional differences. Both observational climatologies and Earth system models (ESMs) systematically overestimated surface phosphate. Furthermore, ESMs misrepresented the relationships between phosphate, phytoplankton biomass, and primary productivity. Atmospheric iron input and nitrogen fixation are known important controls on surface phosphate, but model simulations showed that differences in the iron-to-macronutrient ratio in the vertical nutrient supply and surface lateral transport are additional drivers of phosphate concentrations. Our study demonstrates the importance of accurately quantifying nutrients for understanding the regulation of ocean ecosystems and biogeochemistry now and under future climate conditions.

Keywords: controls surface; surface ocean; ocean phosphate; biogeochemical controls; phosphate

Journal Title: Science Advances
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.