U.S. drought is analyzed over the past millennium, showing that ENSO has some influence but much variability remains unexplained. The American West exemplifies drought-sensitive regions with growing populations. Paleoclimate investigations… Click to show full abstract
U.S. drought is analyzed over the past millennium, showing that ENSO has some influence but much variability remains unexplained. The American West exemplifies drought-sensitive regions with growing populations. Paleoclimate investigations have documented severe droughts in this region before European settling, with major implications for water management and planning. Here, we leverage paleoclimate data assimilation to reconstruct past climate states, enabling a large-scale multivariate investigation of U.S. drought dynamics over the last millennium. These results confirm that La NiƱa conditions significantly influence southwest U.S. drought over the past millennium but only account for, by one metric, ~13% of interannual drought variability in that region. Atlantic sea surface temperatures may also contribute a small influence, but unexplained variability suggests a substantial role for internal atmospheric variability. This conclusion is buttressed by analysis of simulations from the Community Earth System Model Last Millennium Ensemble. While greenhouse gases will increase future drought risk, as shown in other work, interannual U.S. drought variations will also be widely influenced by processes internal to the atmosphere.
               
Click one of the above tabs to view related content.