LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway

Photo from wikipedia

Activation of interferon genes constitutes an important anticancer pathway able to restrict proliferation of cancer cells. Here, we demonstrate that the H3K9me3 histone methyltransferase (HMT) suppressor of variegation 3–9 homolog… Click to show full abstract

Activation of interferon genes constitutes an important anticancer pathway able to restrict proliferation of cancer cells. Here, we demonstrate that the H3K9me3 histone methyltransferase (HMT) suppressor of variegation 3–9 homolog 1 (SUV39H1) is required for the proliferation of acute myeloid leukemia (AML) and find that its loss leads to activation of the interferon pathway. Mechanistically, we show that this occurs via destabilization of a complex composed of SUV39H1 and the two H3K9me2 HMTs, G9A and GLP. Indeed, loss of H3K9me2 correlated with the activation of key interferon pathway genes, and interference with the activities of G9A/GLP largely phenocopied loss of SUV39H1. Last, we demonstrate that inhibition of G9A/GLP synergized with DNA demethylating agents and that SUV39H1 constitutes a potential biomarker for the response to hypomethylation treatment. Collectively, we uncovered a clinically relevant role for H3K9me2 in safeguarding cancer cells against activation of the interferon pathway.

Keywords: cells activation; activation interferon; interferon pathway; pathway; cancer cells

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.