LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Piezoelectric ultrasound energy–harvesting device for deep brain stimulation and analgesia applications

Photo from wikipedia

Supplying wireless power is a challenging technical problem of great importance for implantable biomedical devices. Here, we introduce a novel implantable piezoelectric ultrasound energy–harvesting device based on Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT)… Click to show full abstract

Supplying wireless power is a challenging technical problem of great importance for implantable biomedical devices. Here, we introduce a novel implantable piezoelectric ultrasound energy–harvesting device based on Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystal. The output power density of this device can reach up to 1.1 W/cm2 in vitro, which is 18 times higher than the previous record (60 mW/cm2). After being implanted in the rat brain, under 1-MHz ultrasound with a safe intensity of 212 mW/cm2, the as-developed device can produce an instantaneous effective output power of 280 μW, which can immediately activate the periaqueductal gray brain area. The rat electrophysiological experiments under anesthesia and behavioral experiments demonstrate that our wireless-powered device is well qualified for deep brain stimulation and analgesia applications. These encouraging results provide new insights into the development of implantable devices in the future.

Keywords: harvesting device; deep brain; piezoelectric ultrasound; brain; energy harvesting; ultrasound energy

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.