LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DIRECT-NET: An efficient method to discover cis-regulatory elements and construct regulatory networks from single-cell multiomics data

Photo from wikipedia

The emergence of single-cell multiomics data provides unprecedented opportunities to scrutinize the transcriptional regulatory mechanisms controlling cell identity. However, how to use those datasets to dissect the cis-regulatory element (CRE)–to–gene… Click to show full abstract

The emergence of single-cell multiomics data provides unprecedented opportunities to scrutinize the transcriptional regulatory mechanisms controlling cell identity. However, how to use those datasets to dissect the cis-regulatory element (CRE)–to–gene relationships at a single-cell level remains a major challenge. Here, we present DIRECT-NET, a machine-learning method based on gradient boosting, to identify genome-wide CREs and their relationship to target genes, either from parallel single-cell gene expression and chromatin accessibility data or from single-cell chromatin accessibility data alone. By extensively evaluating and characterizing DIRECT-NET’s predicted CREs using independent functional genomics data, we find that DIRECT-NET substantially improves the accuracy of inferring CRE-to-gene relationships in comparison to existing methods. DIRECT-NET is also capable of revealing cell subpopulation–specific and dynamic regulatory linkages. Overall, DIRECT-NET provides an efficient tool for predicting transcriptional regulation codes from single-cell multiomics data.

Keywords: cell multiomics; multiomics data; cell; direct net; cis regulatory; single cell

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.