LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomic-scale observation of dynamic grain boundary structural transformation during shear-mediated migration

Photo from wikipedia

Grain boundary (GB) structural change is commonly observed during and after stress-driven GB migration in nanocrystalline materials, but its exact atomic scale transformation has not been explored experimentally. Here, using… Click to show full abstract

Grain boundary (GB) structural change is commonly observed during and after stress-driven GB migration in nanocrystalline materials, but its exact atomic scale transformation has not been explored experimentally. Here, using in situ high-resolution transmission electron microscopy combined with molecular dynamics simulations, we observed the dynamic GB structural transformation stemming from reversible facet transformation and GB dissociation during the shear-mediated migration of faceted GBs in gold nanocrystals. A reversible transformation was found to occur between (002)/(111) and Σ11(113) GB facets, accomplished by the coalescence and detachment of (1¯1¯1)/(002)-type GB steps or disconnections that mediated the GB migration. In comparison, the dissociation of (002)/(111) GB into Σ11(113) and Σ3(111) GBs occurred via the reaction of (111)/(111¯)-type steps that involved the emission of partial dislocations. Furthermore, these transformations were loading dependent and could be accommodated by GB junctions. This work provides atomistic insights into the dynamic structural transformation during GB migration.

Keywords: boundary structural; mediated migration; grain boundary; migration; structural transformation; transformation

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.