The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by… Click to show full abstract
The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules, the photoelectron energy does not depend on the electron's emission direction, but theoretical studies have questioned this since 1990. Here, we provide experimental evidence that the energies of photoelectrons emitted against the light propagation direction are shifted toward higher values, while those electrons that are emitted along the light propagation direction are shifted to lower values. We attribute the energy shift to a nondipole contribution to the ponderomotive potential that is due to the interaction of the moving electrons with the incident photons.
               
Click one of the above tabs to view related content.