We propose a universal mechanism for the Josephson diode effect in short Josephson junctions. The proposed mechanism is due to finite Cooper pair momentum and is a manifestation of simultaneous… Click to show full abstract
We propose a universal mechanism for the Josephson diode effect in short Josephson junctions. The proposed mechanism is due to finite Cooper pair momentum and is a manifestation of simultaneous breaking of inversion and time-reversal symmetries. The diode efficiency is up to 40%, which corresponds to an asymmetry between the critical currents in opposite directions Ic+/Ic− ≈ 230%. We show that this arises from both the Doppler shift of the Andreev bound state energies and the phase-independent asymmetric current from the continuum. Last, we propose a simple scheme for achieving finite-momentum pairing, which does not rely on spin-orbit coupling and thus greatly expands existing platforms for the observation of supercurrent diode effects.
               
Click one of the above tabs to view related content.