LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions

Photo from wikipedia

The mechanisms underlying decadal variability in Arctic sea ice remain actively debated. Here, we show that variability in boreal biomass burning (BB) emissions strongly influences simulated Arctic sea ice on… Click to show full abstract

The mechanisms underlying decadal variability in Arctic sea ice remain actively debated. Here, we show that variability in boreal biomass burning (BB) emissions strongly influences simulated Arctic sea ice on multidecadal time scales. In particular, we find that a strong acceleration in sea ice decline in the early 21st century in the Community Earth System Model version 2 (CESM2) is related to increased variability in prescribed BB emissions in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) through summertime aerosol-cloud interactions. Furthermore, we find that more than half of the reported improvement in sea ice sensitivity to CO2 emissions and global warming from CMIP5 to CMIP6 can be attributed to the increased BB variability, at least in the CESM. These results highlight a new kind of uncertainty that needs to be considered when incorporating new observational data into model forcing while also raising questions about the role of BB emissions on the observed Arctic sea ice loss.

Keywords: arctic sea; sea ice; biomass burning; sea; cmip6

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.