LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cell-autonomous immune dysfunction driven by disrupted autophagy in C9orf72-ALS iPSC-derived microglia contributes to neurodegeneration

Photo by nci from unsplash

The most common genetic mutation found in familial and sporadic amyotrophic lateral sclerosis (ALS), as well as fronto-temporal dementia (FTD), is a repeat expansion in the C9orf72 gene. C9orf72 is… Click to show full abstract

The most common genetic mutation found in familial and sporadic amyotrophic lateral sclerosis (ALS), as well as fronto-temporal dementia (FTD), is a repeat expansion in the C9orf72 gene. C9orf72 is highly expressed in human myeloid cells, and although neuroinflammation and microglial pathology are widely found in ALS/FTD, the underlying mechanisms are poorly understood. Here, using human induced pluripotent stem cell-derived microglia-like cells (hiPSC-MG) harbouring C9orf72 mutation (mC9-MG) together with gene-corrected isogenic controls (isoC9-MG) and C9ORF72 knock-out hiPSC-MG (C9KO-MG), we show that reduced C9ORF72 protein is associated with impaired phagocytosis and an exaggerated inflammatory response upon stimulation with lipopolysaccharide, driven by sustained activation of NLRP3 inflammasome and NF-κB signalling. Analysis of the hiPSC-MG C9ORF72 interactome revealed an association of C9ORF72 with key regulators of autophagy, a process involved in the homeostatic regulation of the innate immune response. We found impaired initiation of autophagy in C9KO-MG and mC9-MG. Furthermore, through motor neuron-microglial (MN-MG) co-culture studies, we identified that autophagy deficit in mC9-MG led to increased vulnerability of C9 MNs to excitotoxic stimulus. Pharmacological activation of autophagy ameliorated the sustained activation of NLRP3 inflammasome and NF-κB signalling, reversed the phagocytic deficit found in mC9-MG and also reduced MN death in MN-MG co-cultures. We validated these findings in blood-derived macrophages from people with C9orf72 mutation. Our results reveal an important role for C9ORF72 in regulating microglial immune homeostasis and identify dysregulation in human myeloid cells as a contributor to neurodegeneration in ALS/FTD. Teaser Disrupted autophagy led immune activation in microglia results in enhanced motor neuronal death in C9orf72-ALS.

Keywords: derived microglia; disrupted autophagy; cell autonomous; c9orf72 als; c9orf72; activation

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.