Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been… Click to show full abstract
Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveforms. We call such a device a quantum arbitrary waveform generator (Q-AWG). The Q-AWG must be able to handle various quantum states of light, which are fragile. Thus, the Q-AWG requires a radically different methodology from classical pulse shaping. Here, we invent an architecture of Q-AWGs that can operate semi-deterministically at a repetition rate over gigahertz in principle. We demonstrate its core technology via generating highly nonclassical states with temporal waveforms that have never been realized before. This result would lead to powerful quantum technologies based on Q-AWGs such as practical optical quantum computing.
               
Click one of the above tabs to view related content.