LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries

Photo by mathieustern from unsplash

In the pursuit of energy-dense all-solid-state lithium batteries (ASSBs), Li-rich Mn-based oxide (LRMO) cathodes provide an exciting path forward with unexpectedly high capacity, low cost, and excellent processibility. However, the… Click to show full abstract

In the pursuit of energy-dense all-solid-state lithium batteries (ASSBs), Li-rich Mn-based oxide (LRMO) cathodes provide an exciting path forward with unexpectedly high capacity, low cost, and excellent processibility. However, the cause for LRMO|solid electrolyte interfacial degradation remains a mystery, hindering the application of LRMO-based ASSBs. Here, we first reveal that the surface oxygen instability of LRMO is the driving force for interfacial degradation, which severely blocks the interfacial Li-ion transport and triggers fast battery failure. By replacing the charge compensation of surface oxygen with sulfite, the overoxidation and interfacial degradation can be effectively prevented, therefore achieving a high specific capacity (~248 mAh g−1, 1.1 mAh cm−2; ~225 mAh g−1, 2.9 mAh cm−2) and excellent long-term cycling stability of >300 cycles with 81.2% capacity retention at room temperature. These findings emphasize the importance of irreversible anion reactions in interfacial failure and provide fresh insights into constructing stable interfaces in LRMO-based ASSBs.

Keywords: state lithium; solid state; rich based; lithium batteries; degradation

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.