LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strain-induced antipolar phase in hafnia stabilizes robust thin-film ferroelectricity

Hafnia (HfO2) is a promising candidate for next-generation ferroelectric devices due to its robust ferroelectricity at reduced dimensions and its compatibility with silicon technology. Unfortunately, the origin of robust ferroelectricity… Click to show full abstract

Hafnia (HfO2) is a promising candidate for next-generation ferroelectric devices due to its robust ferroelectricity at reduced dimensions and its compatibility with silicon technology. Unfortunately, the origin of robust ferroelectricity and the underlying phase transition mechanism in HfO2 remain elusive. Here, we show that its ferroelectricity arises from two phase transitions, where the primary phase transition to antipolar phase is activated by tensile strain. Above a threshold antipolar mode amplitude, a strong cooperative polar-antipolar coupling enables a second ferroelectric phase transition superimposed on the antipolar phase. Because the antipolar mode is not susceptible to depolarization, this polar-antipolar coupling stabilizes the polarization against depolarization effects. Our results demonstrate that tensile strain and polar-antipolar coupling are the origins of ferroelectricity in HfO2 and provide a previously unknown mechanism against depolarization other than conventional improper ferroelectricity.

Keywords: hafnia; ferroelectricity; phase transition; strain; antipolar phase; phase

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.