LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PARC: Physics-aware recurrent convolutional neural networks to assimilate meso scale reactive mechanics of energetic materials

Photo from wikipedia

The thermo-mechanical response of shock-initiated energetic materials (EMs) is highly influenced by their microstructures, presenting an opportunity to engineer EM microstructures in a “materials-by-design” framework. However, the current design practice… Click to show full abstract

The thermo-mechanical response of shock-initiated energetic materials (EMs) is highly influenced by their microstructures, presenting an opportunity to engineer EM microstructures in a “materials-by-design” framework. However, the current design practice is limited, as a large ensemble of simulations is required to construct the complex EM structure-property-performance linkages. We present the physics-aware recurrent convolutional (PARC) neural network, a deep learning algorithm capable of learning the mesoscale thermo-mechanics of EM from a modest number of high-resolution direct numerical simulations (DNS). Validation results demonstrated that PARC could predict the themo-mechanical response of shocked EMs with comparable accuracy to DNS but with notably less computation time. The physics-awareness of PARC enhances its modeling capabilities and generalizability, especially when challenged in unseen prediction scenarios. We also demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM.

Keywords: physics; aware recurrent; recurrent convolutional; physics aware; mechanics; energetic materials

Journal Title: Science Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.