LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomineralogical signatures of breast microcalcifications

Photo by nci from unsplash

Microcalcifications, primarily biogenic apatite, occur in cancerous and benign breast pathologies and are key mammographic indicators. Outside the clinic, numerous microcalcification compositional metrics (e.g., carbonate and metal content) are linked… Click to show full abstract

Microcalcifications, primarily biogenic apatite, occur in cancerous and benign breast pathologies and are key mammographic indicators. Outside the clinic, numerous microcalcification compositional metrics (e.g., carbonate and metal content) are linked to malignancy, yet microcalcification formation is dependent on microenvironmental conditions, which are notoriously heterogeneous in breast cancer. We interrogate multiscale heterogeneity in 93 calcifications from 21 breast cancer patients using an omics-inspired approach: For each microcalcification, we define a “biomineralogical signature” combining metrics derived from Raman microscopy and energy-dispersive spectroscopy. We observe that (i) calcifications cluster into physiologically relevant groups reflecting tissue type and local malignancy; (ii) carbonate content exhibits substantial intratumor heterogeneity; (iii) trace metals including zinc, iron, and aluminum are enhanced in malignant-localized calcifications; and (iv) the lipid-to-protein ratio within calcifications is lower in patients with poor composite outcome, suggesting that there is potential clinical value in expanding research on calcification diagnostic metrics to include “mineral-entrapped” organic matrix.

Keywords: breast microcalcifications; spectroscopy; microscopy; signatures breast; microcalcification; biomineralogical signatures

Journal Title: Science Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.