LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electric field manipulation of spin chirality and skyrmion dynamic

Photo by glenncarstenspeters from unsplash

The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes spin chirality. One scientific and technological challenge is understanding and controlling the interaction between spin chirality and electric field.… Click to show full abstract

The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes spin chirality. One scientific and technological challenge is understanding and controlling the interaction between spin chirality and electric field. In this study, we investigate an unconventional electric field effect on interfacial DMI, skyrmion helicity, and skyrmion dynamics in a system with broken inversion symmetry. We design heterostructures with a 3d-5d atomic orbital interface to demonstrate the gate bias control of the DMI energy and thus transform the DMI between opposite chiralities. Furthermore, we use this voltage-controlled DMI (VCDMI) to manipulate the skyrmion spin texture. As a result, a type of intermediate skyrmion with a unique helicity is created, and its motion can be controlled and made to go straight. Our work shows the effective control of spin chirality, skyrmion helicity, and skyrmion dynamics by VCDMI. It promotes the emerging field of voltage-controlled chiral interactions and voltage-controlled skyrmionics.

Keywords: electric field; spin chirality; skyrmion

Journal Title: Science Advances
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.