Al-Zn-Mg alloys are widely used in the transportation industry owing to their high strength-to-weight ratio. In these alloys, the main strengthening mechanism is precipitation hardening that occurs because of the… Click to show full abstract
Al-Zn-Mg alloys are widely used in the transportation industry owing to their high strength-to-weight ratio. In these alloys, the main strengthening mechanism is precipitation hardening that occurs because of the formation of nano-sized precipitates. Herein, an interfacial structure of η4 precipitates, one of the main precipitates in these alloys, is revealed using aberration-corrected scanning transmission electron microscopy and first-principles calculations. These precipitates exhibit a pseudo-periodic steps and bridges. The results of this study demonstrate that the peculiar interface structure of η4/Al relieves the strain energy of η4 precipitates thus stabilizing them. The atomistic role of this interfacial structure in the nucleation and growth of the precipitates is elucidated. This study paves the way for tailoring the mechanical properties of alloys by controlling their precipitation kinetics.
               
Click one of the above tabs to view related content.