LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reticulon 3–dependent ER-PM contact sites control EGFR nonclathrin endocytosis

Photo by hostreviews from unsplash

ER-PM contacts in nonclathrin endocytosis The epidermal growth factor receptor (EGFR) is internalized through both clathrin-mediated endocytosis and nonclathrin endocytosis (NCE). The two pathways act in concert to sustain EGFR… Click to show full abstract

ER-PM contacts in nonclathrin endocytosis The epidermal growth factor receptor (EGFR) is internalized through both clathrin-mediated endocytosis and nonclathrin endocytosis (NCE). The two pathways act in concert to sustain EGFR signaling or its long-term attenuation. The mechanistic underpinnings of EGFR-NCE are unclear. Caldieri et al. used a variety of cell and molecular biology approaches to identify nine regulators of EGFR-NCE (see the Perspective by Tan and Anderson). They also identified an additional cargo of the pathway (CD147). One of the regulators of the pathway was the endoplasmic reticulum (ER)-resident protein reticulon 3 (RTN3). Unexpectedly, EGFR-NCE required the formation of specific contacts between the plasma membrane (PM) and the cortical ER, mediated by RTN3. ER-PM contact sites were required in the very early steps of the internalization process for the maturation of NCE tubular intermediates. Science, this issue p. 617; see also p. 584 An alternate mechanism for epidermal growth factor receptor endocytosis is dissected. The integration of endocytic routes is critical to regulate receptor signaling. A nonclathrin endocytic (NCE) pathway of the epidermal growth factor receptor (EGFR) is activated at high ligand concentrations and targets receptors to degradation, attenuating signaling. Here we performed an unbiased molecular characterization of EGFR-NCE. We identified NCE-specific regulators, including the endoplasmic reticulum (ER)–resident protein reticulon 3 (RTN3) and a specific cargo, CD147. RTN3 was critical for EGFR/CD147-NCE, promoting the creation of plasma membrane (PM)–ER contact sites that were required for the formation and/or maturation of NCE invaginations. Ca2+ release at these sites, triggered by inositol 1,4,5-trisphosphate (IP3)–dependent activation of ER Ca2+ channels, was needed for the completion of EGFR internalization. Thus, we identified a mechanism of EGFR endocytosis that relies on ER-PM contact sites and local Ca2+ signaling.

Keywords: reticulon; nce; contact sites; endocytosis; nonclathrin endocytosis

Journal Title: Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.