Moving transistors downscale One option for extending the performance of complementary metal-oxide semiconductor (CMOS) devices based on silicon technology is to use semiconducting carbon nanotubes as the gates. Qiu et… Click to show full abstract
Moving transistors downscale One option for extending the performance of complementary metal-oxide semiconductor (CMOS) devices based on silicon technology is to use semiconducting carbon nanotubes as the gates. Qiu et al. fabricated top-gated carbon nanotube field-effect transistors with a gate length of 5 nm. Thin graphene contacts helped maintain electrostatic control. A scaling trend study revealed that, compared with silicon CMOS devices, the nanotube-based devices operated much faster and at much lower supply voltage, and they approached the limit of one electron per switching operation. Science, this issue p. 271 Carbon nanotube field-effect transistors approach the quantum limit of one electron per switching operation. High-performance top-gated carbon nanotube field-effect transistors (CNT FETs) with a gate length of 5 nanometers can be fabricated that perform better than silicon complementary metal-oxide semiconductor (CMOS) FETs at the same scale. A scaling trend study revealed that the scaled CNT-based devices, which use graphene contacts, can operate much faster and at much lower supply voltage (0.4 versus 0.7 volts) and with much smaller subthreshold slope (typically 73 millivolts per decade). The 5-nanometer CNT FETs approached the quantum limit of FETs by using only one electron per switching operation. In addition, the contact length of the CNT CMOS devices was also scaled down to 25 nanometers, and a CMOS inverter with a total pitch size of 240 nanometers was also demonstrated.
               
Click one of the above tabs to view related content.