LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Obstruction of pilus retraction stimulates bacterial surface sensing

Photo from wikipedia

Elucidating a bacterial sense of touch Bacteria can adhere to surfaces within the host. This leads to tissue colonization, induction of virulence, and eventually the formation of biofilms—multicellular bacterial communities… Click to show full abstract

Elucidating a bacterial sense of touch Bacteria can adhere to surfaces within the host. This leads to tissue colonization, induction of virulence, and eventually the formation of biofilms—multicellular bacterial communities that resist antibiotics and clearance by the immune system (see the Perspective by Hughes and Berg). Hug et al. show that bacteria have a sense of touch that allows them to change their behavior rapidly when encountering surfaces. This tactile sensing makes use of the inner components of the flagellum, a rotary motor powered by proton motif force that facilitates swimming toward surfaces. Thus, the multifunctional flagellar motor is a mechanosensitive device that promotes surface adaptation. In complementary work, Ellison et al. elucidate the role of bacterial pili in a similar surface-sensing role. Science, this issue p. 531, p. 535; see also p. 446 Bacteria sense surfaces via the resistance imparted on retracting surface-bound pili. It is critical for bacteria to recognize surface contact and initiate physiological changes required for surface-associated lifestyles. Ubiquitous microbial appendages called pili are involved in sensing surfaces and facilitating downstream behaviors, but the mechanism by which pili mediate surface sensing has been unclear. We visualized Caulobacter crescentus pili undergoing dynamic cycles of extension and retraction. Within seconds of surface contact, these cycles ceased, which coincided with synthesis of the adhesive holdfast required for attachment. Physically blocking pili imposed resistance to pilus retraction, which was sufficient to stimulate holdfast synthesis without surface contact. Thus, to sense surfaces, bacteria use the resistance on retracting, surface-bound pili that occurs upon surface contact.

Keywords: pili; surface; pilus retraction; surface sensing; surface contact

Journal Title: Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.