LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ideal Weyl points and helicoid surface states in artificial photonic crystal structures

Photo from wikipedia

Exploring photonic topology Scattering topological effects are being explored in a variety of electronic and optical materials systems owing to their robustness against defects (see the Perspective by Özdemir). Yang… Click to show full abstract

Exploring photonic topology Scattering topological effects are being explored in a variety of electronic and optical materials systems owing to their robustness against defects (see the Perspective by Özdemir). Yang et al. designed and fabricated an ideal optical analog of a three-dimensional Weyl system. Angular transmission measurements revealed four Weyl points at the same energy, as well as the signature helicoidal arcs associated with such an exotic topological system. Zhou et al. theoretically proposed and experimentally demonstrated the formation of a topologically protected bulk Fermi arc. They attributed the formation of the arc to the topological nature of paired exceptional points (points at which gain and loss in the system are matched). Photonic crystals may provide a powerful platform for studying exotic properties of topological electronic systems and may also be used to develop optical devices that exploit topological properties of light-matter interactions. Science, this issue p. 1013, p. 1009; see also p. 995 A designed photonic crystal structure provides an ideal Weyl system with helicoidal surface states. Weyl points are the crossings of linearly dispersing energy bands of three-dimensional crystals, providing the opportunity to explore a variety of intriguing phenomena such as topologically protected surface states and chiral anomalies. However, the lack of an ideal Weyl system in which the Weyl points all exist at the same energy and are separated from any other bands poses a serious limitation to the further development of Weyl physics and potential applications. By experimentally characterizing a microwave photonic crystal of saddle-shaped metallic coils, we observed ideal Weyl points that are related to each other through symmetry operations. Topological surface states exhibiting helicoidal structure have also been demonstrated. Our system provides a photonic platform for exploring ideal Weyl systems and developing possible topological devices.

Keywords: weyl points; ideal weyl; surface states; system

Journal Title: Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.