LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling

Photo by brambro from unsplash

An intrinsic magnetic tunnel junction An electrical current running through two stacked magnetic layers is larger if their magnetizations point in the same direction than if they point in opposite… Click to show full abstract

An intrinsic magnetic tunnel junction An electrical current running through two stacked magnetic layers is larger if their magnetizations point in the same direction than if they point in opposite directions. These so-called magnetic tunnel junctions, used in electronics, must be carefully engineered. Two groups now show that high magnetoresistance intrinsically occurs in samples of the layered material CrI3 sandwiched between graphite contacts. By varying the number of layers in the samples, Klein et al. and Song et al. found that the electrical current running perpendicular to the layers was largest in high magnetic fields and smallest near zero field. This observation is consistent with adjacent layers naturally having opposite magnetizations, which align parallel to each other in high magnetic fields. Science, this issue p. 1218, p. 1214 The atomic layers of the material CrI3 act as spin filters in graphite/CrI3/graphite junctions. Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.

Keywords: waals crystalline; van der; der waals; cri3; magnetism van; probing magnetism

Journal Title: Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.