LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes

Photo by cdc from unsplash

Defense cargo shuttles in vesicles Plants can use small RNAs (sRNAs) to interfere with virulence factor gene expression in pathogens. Cai et al. show that the small mustard plant Arabidopsis… Click to show full abstract

Defense cargo shuttles in vesicles Plants can use small RNAs (sRNAs) to interfere with virulence factor gene expression in pathogens. Cai et al. show that the small mustard plant Arabidopsis shuttles defensive sRNAs into the necrotrophic fungus Botrytis cinerea via extracellular vesicles (see the Perspective by Thomma and Cook). The vesicles are associated with tetraspanin proteins, which can interact and form membrane microdomains. Several dozen different sRNAs targeting the pathogenic process were transported from Arabidopsis to B. cinerea in a selective manner. Science, this issue p. 1126; see also p. 1070 Exosomal vesicles shuttle defensive small RNAs from the host plant to a pathogenic fungus. Some pathogens and pests deliver small RNAs (sRNAs) into host cells to suppress host immunity. Conversely, hosts also transfer sRNAs into pathogens and pests to inhibit their virulence. Although sRNA trafficking has been observed in a wide variety of interactions, how sRNAs are transferred, especially from hosts to pathogens and pests, is still unknown. Here, we show that host Arabidopsis cells secrete exosome-like extracellular vesicles to deliver sRNAs into fungal pathogen Botrytis cinerea. These sRNA-containing vesicles accumulate at the infection sites and are taken up by the fungal cells. Transferred host sRNAs induce silencing of fungal genes critical for pathogenicity. Thus, Arabidopsis has adapted exosome-mediated cross-kingdom RNA interference as part of its immune responses during the evolutionary arms race with the pathogen.

Keywords: extracellular vesicles; fungal pathogen; virulence; small rnas; host

Journal Title: Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.