LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Singular angular magnetoresistance in a magnetic nodal semimetal

Photo by photified from unsplash

Mind the angle Interplay between real- and momentum-space properties of materials can lead to exotic phenomena. Suzuki et al. studied electrical transport in the presence of a magnetic field in… Click to show full abstract

Mind the angle Interplay between real- and momentum-space properties of materials can lead to exotic phenomena. Suzuki et al. studied electrical transport in the presence of a magnetic field in cerium-aluminum-germanium, a Weyl semimetal that also harbors magnetism (see the Perspective by Hassinger and Meng). As they varied the orientation of the applied field, they noticed spikes of resistivity sharply centered around the high symmetry axes of the material. The spikes were a consequence of the small overlap of Fermi surfaces—which “live” in momentum space—on either side of magnetic domain walls, which occur in real space. This extreme angular sensitivity may be useful in practical applications. Science, this issue p. 377; see also p. 324 Transport measurements show extreme sensitivity to the angle of the applied magnetic field in CeAlGe. Transport coefficients of correlated electron systems are often useful for mapping hidden phases with distinct symmetries. Here we report a transport signature of spontaneous symmetry breaking in the magnetic Weyl semimetal cerium-aluminum-germanium (CeAlGe) system in the form of singular angular magnetoresistance (SAMR). This angular response exceeding 1000% per radian is confined along the high-symmetry axes with a full width at half maximum reaching less than 1° and is tunable via isoelectronic partial substitution of silicon for germanium. The SAMR phenomena is explained theoretically as a consequence of controllable high-resistance domain walls, arising from the breaking of magnetic point group symmetry strongly coupled to a nearly nodal electronic structure. This study indicates ingredients for engineering magnetic materials with high angular sensitivity by lattice and site symmetries.

Keywords: transport; semimetal; symmetry; singular angular; angular magnetoresistance

Journal Title: Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.