LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight

Photo from wikipedia

What to expect after a year in space Space is the final frontier for understanding how extreme environments affect human physiology. Following twin astronauts, one of which spent a year-long… Click to show full abstract

What to expect after a year in space Space is the final frontier for understanding how extreme environments affect human physiology. Following twin astronauts, one of which spent a year-long mission on the International Space Station, Garrett-Bakelman et al. examined molecular and physiological traits that may be affected by time in space (see the Perspective by Löbrich and Jeggo). Sequencing the components of whole blood revealed that the length of telomeres, which is important to maintain in dividing cells and may be related to human aging, changed substantially during space flight and again upon return to Earth. Coupled with changes in DNA methylation in immune cells and cardiovascular and cognitive effects, this study provides a basis to assess the hazards of long-term space habitation. Science, this issue p. eaau8650; see also p. 127 An integrated analysis reveals the changes, down to the molecular level, in one man during a year-long spaceflight. INTRODUCTION To date, 559 humans have been flown into space, but long-duration (>300 days) missions are rare (n = 8 total). Long-duration missions that will take humans to Mars and beyond are planned by public and private entities for the 2020s and 2030s; therefore, comprehensive studies are needed now to assess the impact of long-duration spaceflight on the human body, brain, and overall physiology. The space environment is made harsh and challenging by multiple factors, including confinement, isolation, and exposure to environmental stressors such as microgravity, radiation, and noise. The selection of one of a pair of monozygotic (identical) twin astronauts for NASA’s first 1-year mission enabled us to compare the impact of the spaceflight environment on one twin to the simultaneous impact of the Earth environment on a genetically matched subject. RATIONALE The known impacts of the spaceflight environment on human health and performance, physiology, and cellular and molecular processes are numerous and include bone density loss, effects on cognitive performance, microbial shifts, and alterations in gene regulation. However, previous studies collected very limited data, did not integrate simultaneous effects on multiple systems and data types in the same subject, or were restricted to 6-month missions. Measurement of the same variables in an astronaut on a year-long mission and in his Earth-bound twin indicated the biological measures that might be used to determine the effects of spaceflight. Presented here is an integrated longitudinal, multidimensional description of the effects of a 340-day mission onboard the International Space Station. RESULTS Physiological, telomeric, transcriptomic, epigenetic, proteomic, metabolomic, immune, microbiomic, cardiovascular, vision-related, and cognitive data were collected over 25 months. Some biological functions were not significantly affected by spaceflight, including the immune response (T cell receptor repertoire) to the first test of a vaccination in flight. However, significant changes in multiple data types were observed in association with the spaceflight period; the majority of these eventually returned to a preflight state within the time period of the study. These included changes in telomere length, gene regulation measured in both epigenetic and transcriptional data, gut microbiome composition, body weight, carotid artery dimensions, subfoveal choroidal thickness and peripapillary total retinal thickness, and serum metabolites. In addition, some factors were significantly affected by the stress of returning to Earth, including inflammation cytokines and immune response gene networks, as well as cognitive performance. For a few measures, persistent changes were observed even after 6 months on Earth, including some genes’ expression levels, increased DNA damage from chromosomal inversions, increased numbers of short telomeres, and attenuated cognitive function. CONCLUSION Given that the majority of the biological and human health variables remained stable, or returned to baseline, after a 340-day space mission, these data suggest that human health can be mostly sustained over this duration of spaceflight. The persistence of the molecular changes (e.g., gene expression) and the extrapolation of the identified risk factors for longer missions (>1 year) remain estimates and should be demonstrated with these measures in future astronauts. Finally, changes described in this study highlight pathways and mechanisms that may be vulnerable to spaceflight and may require safeguards for longer space missions; thus, they serve as a guide for targeted countermeasures or monitoring during future missions. Multidimensional, longitudinal assays of the NASA Twins Study. (Left and middle) Genetically identical twin subjects (ground and flight) were characterized across 10 generalized biomedical modalities before (preflight), during (inflight), and after flight (postflight) for a total of 25 months (circles indicate time points at which data were collected). (Right) Data were integrated to guide biomedical metrics across various “-omes” for future missions (concentric circles indicate, from inner to outer, cytokines, proteome, transcriptome, and methylome). To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress–related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.

Keywords: spaceflight; space; year; physiology; year long; twin

Journal Title: Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.