LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrical control of interlayer exciton dynamics in atomically thin heterostructures

Photo from wikipedia

Taking electrical control Excitons—bound pairs of electrons and holes in a solid—can, in principle, be used as information carriers. However, their lifetime is limited because the electrons and holes tend… Click to show full abstract

Taking electrical control Excitons—bound pairs of electrons and holes in a solid—can, in principle, be used as information carriers. However, their lifetime is limited because the electrons and holes tend to quickly recombine. One way to extend this lifetime is to physically separate electrons and holes—for example, by having them reside in different layers of a van der Waals heterostructure. Jauregui et al. used this strategy to form long-lived interlayer excitons in a heterostructure made out of monolayers of molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). Through electrical control of the layers in the heterostructure, the researchers further increased exciton lifetime and formed and manipulated charged excitons. Science, this issue p. 870 Long-lived interlayer excitons are electrically generated and controlled in a MoSe2/WSe2 heterostructure. A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides (TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. By employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate that neutral interlayer excitons can propagate across the entire sample and that their propagation can be controlled by excitation power and gate electrodes. We also use devices with ohmic contacts to facilitate the drift motion of charged interlayer excitons. The electrical generation and control of excitons provide a route for achieving quantum manipulation of bosonic composite particles with complete electrical tunability.

Keywords: electrical control; interlayer excitons; control; electrons holes; atomically thin

Journal Title: Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.