LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction

Photo from wikipedia

Electronic and nuclear dynamics in one Because of the complex, ultrafast interplay between nuclear and electronic degrees of freedom, probing both nuclear and electronic dynamics in excited electronic states within… Click to show full abstract

Electronic and nuclear dynamics in one Because of the complex, ultrafast interplay between nuclear and electronic degrees of freedom, probing both nuclear and electronic dynamics in excited electronic states within a single time-resolved experiment is a great challenge. Yang et al. used ultrafast electron diffraction in combination with ab initio nonadiabatic molecular dynamics and diffraction simulations to study the relaxation dynamics of isolated pyridine molecules after photoexcitation to the S1 state (see the Perspective by Domcke and Sobolewski). They showed that electronic state evolution and molecular structural changes can be recorded simultaneously and independently by tracing a transient signal in small-angle inelastic scattering and large-angle elastic diffraction, respectively. Science, this issue p. 885; see also p. 820 A single time-resolved electron diffraction experiment retrieves both electronic and nuclear dynamics in photoexcited pyridine. Simultaneous observation of nuclear and electronic motion is crucial for a complete understanding of molecular dynamics in excited electronic states. It is challenging for a single experiment to independently follow both electronic and nuclear dynamics at the same time. Here we show that ultrafast electron diffraction can be used to simultaneously record both electronic and nuclear dynamics in isolated pyridine molecules, naturally disentangling the two components. Electronic state changes (S1→S0 internal conversion) were reflected by a strong transient signal in small-angle inelastic scattering, and nuclear structural changes (ring puckering) were monitored by large-angle elastic diffraction. Supported by ab initio nonadiabatic molecular dynamics and diffraction simulations, our experiment provides a clear view of the interplay between electronic and nuclear dynamics of the photoexcited pyridine molecule.

Keywords: nuclear electronic; diffraction; electron diffraction; ultrafast electron; nuclear dynamics; electronic nuclear

Journal Title: Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.