LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water

Photo from wikipedia

Cysteine as peptide precursor and catalyst Among amino acids, cysteine is highly reactive as a nucleophile, metal ligand, and participant in redox and radical reactions. These properties make cysteine attractive… Click to show full abstract

Cysteine as peptide precursor and catalyst Among amino acids, cysteine is highly reactive as a nucleophile, metal ligand, and participant in redox and radical reactions. These properties make cysteine attractive as a component of prebiotic chemistry, but traditional Strecker synthesis of α-aminonitriles, which can serve as peptide precursors, cannot produce free cysteine. Foden et al. found that a simple acylation of the free amine prevented degradation of cysteine nitrile and enabled synthesis of this cysteine precursor from acetyl dehydroalanine nitrile and a sulfide donor (see the Perspective by Muchowska and Moran). When combined with other proteinogenic α-aminonitriles, acetylcysteine or derivative thiols catalyzed efficient peptide ligation in water. These results highlight how prebiotic synthesis of precursors can also generate function by creating a catalyst for polymerization. Science, this issue p. 865; see also p. 767 Nitrile chemistry unlocks biomimetic cysteine synthesis, fueling catalytic peptide ligation in water. Peptide biosynthesis is performed by ribosomes and several other classes of enzymes, but a simple chemical synthesis may have created the first peptides at the origins of life. α-Aminonitriles—prebiotic α–amino acid precursors—are generally produced by Strecker reactions. However, cysteine’s aminothiol is incompatible with nitriles. Consequently, cysteine nitrile is not stable, and cysteine has been proposed to be a product of evolution, not prebiotic chemistry. We now report a high-yielding, prebiotic synthesis of cysteine peptides. Our biomimetic pathway converts serine to cysteine by nitrile-activated dehydroalanine synthesis. We also demonstrate that N-acylcysteines catalyze peptide ligation, directly coupling kinetically stable—but energy-rich—α-amidonitriles to proteinogenic amines. This rare example of selective and efficient organocatalysis in water implicates cysteine as both catalyst and precursor in prebiotic peptide synthesis.

Keywords: cysteine; water; peptide ligation; chemistry; synthesis

Journal Title: Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.