LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macroevolutionary stability predicts interaction patterns of species in seed dispersal networks

Photo by qqq_saharok from unsplash

The evolution of ecological networks Plants and the animals that eat their fruits and disperse their seeds form complex networks of mutualistic interactions. The structures of many such networks and… Click to show full abstract

The evolution of ecological networks Plants and the animals that eat their fruits and disperse their seeds form complex networks of mutualistic interactions. The structures of many such networks and the ecological forces that shape them are well known, but their deeper evolutionary history has received little attention. Burin et al. address this knowledge gap in a study of frugivorious bird species in documented seed-dispersal networks around the world (see the Perspective by Bello and Barreto). Species occupying central positions in frugivory networks, which thus interact with many plant species, tend to belong to lineages that are more stable over macroevolutionary time scales. These patterns are more evident in regions with warmer and wetter climates and provide evidence that evolutionary processes can leave a signal on the structure of current ecological networks. Science, this issue p. 733 see also p. 682 Central bird species in seed dispersal networks belong to lineages that are more stable over geological time scales. Assessing deep-time mechanisms affecting the assembly of ecological networks is key to understanding biodiversity changes on broader time scales. We combined analyses of diversification rates with interaction network descriptors from 468 bird species belonging to 29 seed dispersal networks to show that bird species that contribute most to the network structure of plant–frugivore interactions belong to lineages that show higher macroevolutionary stability. This association is stronger in warmer, wetter, less seasonal environments. We infer that the macroevolutionary sorting mechanism acts through the regional pool of species by sorting species on the basis of the available relative differences in diversification rates, rather than absolute rates. Our results illustrate how the interplay between interaction patterns and diversification dynamics may shape the organization and long-term dynamics of ecological networks.

Keywords: seed; dispersal networks; seed dispersal; bird species; ecological networks

Journal Title: Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.