LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-dimensional vectorial imaging of surface phonon polaritons

Mapping nanostructure surface excitations Atomic vibrations (phonons) govern many physical properties of materials, especially those related to heat and thermal transport. They also provide fingerprints of the chemistry of a… Click to show full abstract

Mapping nanostructure surface excitations Atomic vibrations (phonons) govern many physical properties of materials, especially those related to heat and thermal transport. They also provide fingerprints of the chemistry of a wide variety of materials, from solids to molecules. The behavior of phonons in nanostructures can be appreciably modified because of confinement effects. Li et al. combined several electron microscopy techniques to map out the phonon-polariton excitations across the surface of magnesium oxide nanostructures with high spatial, spectral, and angular resolution. The reconstruction of the surface excitation maps in three dimensions will be useful for understanding and optimizing the properties of the nanostructured materials for advanced functionality. Science, this issue p. 1364 Electron microscopy provides a map of the phonon-polariton excitations of 3D nanostructures. Surface phonon polaritons (SPhPs) are coupled photon-phonon excitations that emerge at the surfaces of nanostructured materials. Although they strongly influence the optical and thermal behavior of nanomaterials, no technique has been able to reveal the complete three-dimensional (3D) vectorial picture of their electromagnetic density of states. Using a highly monochromated electron beam in a scanning transmission electron microscope, we could visualize varying SPhP signatures from nanoscale MgO cubes as a function of the beam position, energy loss, and tilt angle. The SPhPs’ response was described in terms of eigenmodes and used to tomographically reconstruct the phononic surface electromagnetic fields of the object. Such 3D information promises insights in nanoscale physical phenomena and is invaluable to the design and optimization of nanostructures for fascinating new uses.

Keywords: three dimensional; dimensional vectorial; phonon polaritons; microscopy; surface phonon; surface

Journal Title: Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.