LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material

Photo from wikipedia

Description Turning wood into honeycombs Wood is an attractive material for structural applications, but it usually works best as boards or sheets. Xiao et al. have developed a process for… Click to show full abstract

Description Turning wood into honeycombs Wood is an attractive material for structural applications, but it usually works best as boards or sheets. Xiao et al. have developed a process for engineering hardwood that allows these sheets to be manipulated into complex structures (see the Perspective by Tajvidi and Gardner). The key is to manipulate the cell wall structure by shrinking and blasting open the fibers and vessels by drying and “water-shocking” them. This process creates a window wherein the wood can be manipulated without ripping or tearing. Honeycomb, corrugated, or other complex structures are locked in once the wood dries. —BG Closing and reopening the vessels and fibers in hardwood allows it to be molded into complex shapes. Wood is a sustainable structural material, but it cannot be easily shaped while maintaining its mechanical properties. We report a processing strategy that uses cell wall engineering to shape flat sheets of hardwood into versatile three-dimensional (3D) structures. After breaking down wood’s lignin component and closing the vessels and fibers by evaporating water, we partially re-swell the wood in a rapid water-shock process that selectively opens the vessels. This forms a distinct wrinkled cell wall structure that allows the material to be folded and molded into desired shapes. The resulting 3D-molded wood is six times stronger than the starting wood and comparable to widely used lightweight materials such as aluminum alloys. This approach widens wood’s potential as a structural material, with lower environmental impact for buildings and transportation applications.

Keywords: structural material; cell wall; engineering; wood

Journal Title: Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.