LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conformer-specific photochemistry imaged in real space and time

Photo from wikipedia

Description Conformer-specific dynamics Conformation-dependent dynamics play an important role in organic chemistry syntheses such as electrocyclic reactions, as well as in biological processes such as protein folding. However, current time-resolved… Click to show full abstract

Description Conformer-specific dynamics Conformation-dependent dynamics play an important role in organic chemistry syntheses such as electrocyclic reactions, as well as in biological processes such as protein folding. However, current time-resolved experimental methods struggle to distinguish conformers from each other, and conformational isomerism is usually analyzed through reactant and product distributions. Using a combination of mega–electron volt ultrafast electron diffraction and quantum wave packet simulations, Champenois et al. directly followed the photochemical electrocyclic ring opening of the molecule α-phellandrene with femtosecond time resolution and confirmed that the transformation of a specific molecular conformer follows the famous Woodward-Hoffmann rules. The proposed method is potentially a powerful tool to follow conformer specificity in various organic and biological systems in real time. —YS Ultrafast electron diffraction images show conformer-specific electrocyclic ring opening of α-phellandrene with femtosecond time resolution. Conformational isomers (conformers) of molecules play a decisive role in biology and organic chemistry. However, experimental methods for investigating chemical reaction dynamics are typically not conformer-sensitive. We report on a gas-phase megaelectronvolt ultrafast electron diffraction investigation of α-phellandrene undergoing an electrocyclic ring-opening reaction. We directly imaged the evolution of a specific set of α-phellandrene conformers into the product isomer predicted by the Woodward-Hoffmann rules in real space and time. Our experimental results are in quantitative agreement with nonadiabatic quantum molecular dynamics simulations, which provide considerable detail of how conformation influences the time scale and quantum efficiency of photoinduced ring-opening reactions.

Keywords: ring opening; conformer specific; chemistry; time; conformer; real space

Journal Title: Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.