LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lattice plainification advances highly effective SnSe crystalline thermoelectrics

Photo by ldxcreative from unsplash

Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The… Click to show full abstract

Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit (ZT) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (ΔT) of ~300 kelvin and a seven-pair Peltier cooling ΔTmax of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling. Description Editor’s summary Thermoelectric materials interconvert heat and electricity, making them useful for a range of devices. Liu et al. added copper to tin selenide, which improved the thermoelectric and mechanical properties near room temperature (see the Perspective by Chung). Tin selenide tends to have several defects when synthesized, including tin vacancies. The copper occupies these intrinsic tin vacancies, leading to improved carrier mobility. The overall strategy creates a lattice less riddled with vacancies, which could be useful for other materials. —Brent Grocholski Introducing copper to a sodium-doped tin selenide improves the room temperature thermoelectric properties.

Keywords: tin selenide; snse; temperature; tin; lattice plainification

Journal Title: Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.