LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alternating the current direction

Photo from wikipedia

Description Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides… Click to show full abstract

Description Waveform-controlled electrolysis enables the carbon-carbon coupling of carboxylic acids Carbon-carbon (C–C) bonds constitute the frameworks of almost all organic compounds. The artistry of scientists modulating these chemical bonds provides a fascinating wealth of molecules with diverse functionalities. The central goal of synthetic organic chemistry is to discover more versatile and robust C–C bond-forming reactions with high fidelity. In particular, state-of-the-art transition metal–catalyzed C–C cross-coupling reactions (1) readily provide access to diverse molecules that are rich in arenes (aromatic rings), profoundly accelerating pharmaceutical and materials science. By contrast, efforts in pursuing general coupling of aliphatic C–C chains have been met with limited success. On page 81 of this issue, Hioki et al. (2) demonstrate an elegant solution to this challenge based on waveform-controlled electrolytic C–C coupling of aliphatic carboxylic acids.

Keywords: alternating current; chemistry; carbon; current direction

Journal Title: Science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.