LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae’s predatory strike

Photo by tumbao1949 from unsplash

The independently loaded synchronized dual-catapult system of dragonfly larvae can serve as a model for bioinspired robotics. The biomechanics underlying the predatory strike of dragonfly larvae is not yet understood.… Click to show full abstract

The independently loaded synchronized dual-catapult system of dragonfly larvae can serve as a model for bioinspired robotics. The biomechanics underlying the predatory strike of dragonfly larvae is not yet understood. Dragonfly larvae are aquatic ambush predators, capturing their prey with a strongly modified extensible mouthpart. The current theory of hydraulic pressure being the driving force of the predatory strike can be refuted by our manipulation experiments and reinterpretation of former studies. Here, we report evidence for an independently loaded synchronized dual-catapult system. To power the ballistic movement of a single specialized mouthpart, two independently loaded springs simultaneously release and actuate two separate joints in a kinematic chain. Energy for the movement is stored by straining an elastic structure at each joint and, possibly, the surrounding cuticle, which is preloaded by muscle contraction. As a proof of concept, we developed a bioinspired robotic model resembling the morphology and functional principle of the extensible mouthpart. Understanding the biomechanics of the independently loaded synchronized dual-catapult system found in dragonfly larvae can be used to control the extension direction and, thereby, thrust vector of a power-modulated robotic system.

Keywords: biomechanics; catapult system; dragonfly larvae; dual catapult

Journal Title: Science Robotics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.