LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough

Photo from wikipedia

A blood protein signature discriminates active tuberculosis (TB) from other TB-like disease in adults regardless of HIV status. A triage test for tuberculosis Tuberculosis remains a global health burden. Ahmad… Click to show full abstract

A blood protein signature discriminates active tuberculosis (TB) from other TB-like disease in adults regardless of HIV status. A triage test for tuberculosis Tuberculosis remains a global health burden. Ahmad et al. used machine learning to develop an algorithm that distinguished active tuberculosis from other diseases with similar symptoms by measuring expression of four proteins in blood samples. The authors validated their triage test’s discriminatory power using blood samples from subjects with persistent cough across several continents, showing that performance was improved when detection of antibodies against a mycobacterial antigen was added to the panel. These promising results support further development and field testing using a point-of-care format. Improved tuberculosis (TB) prevention and control depend critically on the development of a simple, readily accessible rapid triage test to stratify TB risk. We hypothesized that a blood protein-based host response signature for active TB (ATB) could distinguish it from other TB-like disease (OTD) in adult patients with persistent cough, thereby providing a foundation for a point-of-care (POC) triage test for ATB. Three adult cohorts consisting of ATB suspects were recruited. A bead-based immunoassay and machine learning algorithms identified a panel of four host blood proteins, interleukin-6 (IL-6), IL-8, IL-18, and vascular endothelial growth factor (VEGF), that distinguished ATB from OTD. An ultrasensitive POC-amenable single-molecule array (Simoa) panel was configured, and the ATB diagnostic algorithm underwent blind validation in an independent, multinational cohort in which ATB was distinguished from OTD with receiver operator characteristic–area under the curve (ROC-AUC) of 0.80 [95% confidence interval (CI), 0.75 to 0.85], 80% sensitivity (95% CI, 73 to 85%), and 65% specificity (95% CI, 57 to 71%). When host antibodies against TB antigen Ag85B were added to the panel, performance improved to 86% sensitivity and 69% specificity. A blood-based host response panel consisting of four proteins and antibodies to one TB antigen can help to differentiate ATB from other causes of persistent cough in patients with and without HIV infection from Africa, Asia, and South America. Performance characteristics approach World Health Organization (WHO) target product profile accuracy requirements and may provide the foundation for an urgently needed blood-based POC TB triage test.

Keywords: persistent cough; tuberculosis; blood; test; triage test

Journal Title: Science Translational Medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.