LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor

Photo from wikipedia

Programmable RNA editing tools enable the reversible correction of mutant transcripts, reducing the potential risk associated with permanent genetic changes associated with the use of DNA editing tools. However, the… Click to show full abstract

Programmable RNA editing tools enable the reversible correction of mutant transcripts, reducing the potential risk associated with permanent genetic changes associated with the use of DNA editing tools. However, the potential of these RNA tools to treat disease remains unknown. Here, we evaluated RNA correction therapy with Cas13-based RNA base editors in the myosin VI p.C442Y heterozygous mutation (Myo6C442Y/+) mouse model that recapitulated the phenotypes of human dominant-inherited deafness. We first screened several variants of Cas13-based RNA base editors and guide RNAs (gRNAs) targeting Myo6C442Y in cultured cells and found that mini dCas13X.1-based adenosine base editor (mxABE), composed of truncated Cas13X.1 and the RNA editing enzyme adenosine deaminase acting on RNA 2 deaminase domain variant (ADAR2ddE488Q), exhibited both high efficiency of A > G conversion and low frequency of off-target edits. Single adeno-associated virus (AAV)–mediated delivery of mxABE in the cochlea corrected the mutated Myo6C442Y to Myo6WT allele in homozygous Myo6C442Y/C442Y mice and resulted in increased Myo6WT allele in the injected cochlea of Myo6C442Y/+ mice. The treatment rescued auditory function, including auditory brainstem response and distortion product otoacoustic emission up to 3 months after AAV-mxABE-Myo6 injection in Myo6C442Y/+ mice. We also observed increased survival rate of hair cells and decreased degeneration of hair bundle morphology in the treated compared to untreated control ears. These findings provide a proof-of-concept study for RNA editing tools as a therapeutic treatment for various semidominant forms of hearing loss and other diseases. Description RNA base editing strategy rescued genetic hearing loss in a mouse model. Targeting the transcriptome Targeting disease-relevant transcripts using RNA editing holds promise for treating genetic diseases, without the risks associated with permanent changes induced by DNA alterations. Here, Xiao et al. evaluated the therapeutic potential of a Cas13-derived RNA base editor for correcting a hearing loss–causing mutation in the myosin VI (Myo6) transcript in a mouse model. The RNA base editor composed of a Cas13X variant and the RNA editing enzyme adenosine deaminase was delivered in the cochlea of mice using an AAV. The treatment prevented hair cell loss and rescued auditory function in mice for up to 3 months after injection, suggesting that RNA editing might be effective for treating genetic disorders.

Keywords: rna editing; hearing loss; base editor; rna base; base

Journal Title: Science Translational Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.