Pyrazinamide is a first-line drug used in the treatment of tuberculosis. High exposure to pyrazinamide and its metabolites may result in hepatotoxicity, whereas low exposure to pyrazinamide has been correlated… Click to show full abstract
Pyrazinamide is a first-line drug used in the treatment of tuberculosis. High exposure to pyrazinamide and its metabolites may result in hepatotoxicity, whereas low exposure to pyrazinamide has been correlated with treatment failure of first-line antitubercular therapy. ABSTRACT Pyrazinamide is a first-line drug used in the treatment of tuberculosis. High exposure to pyrazinamide and its metabolites may result in hepatotoxicity, whereas low exposure to pyrazinamide has been correlated with treatment failure of first-line antitubercular therapy. The aim of this study was to describe the pharmacokinetics and metabolism of pyrazinamide in patients coinfected with tuberculosis and HIV. We further aimed to identify demographic and clinical factors which affect the pharmacokinetics of pyrazinamide and its metabolites in order to suggest individualized dosing regimens. Plasma concentrations of pyrazinamide, pyrazinoic acid, and 5-hydroxypyrazinamide from 63 Rwandan patients coinfected with tuberculosis and HIV were determined by liquid chromatography-tandem mass spectrometry followed by nonlinear mixed-effects modeling. Females had a close to 50% higher relative pyrazinamide bioavailability compared to males. The distribution volumes of pyrazinamide and both metabolites were lower in patients on concomitant efavirenz-based HIV therapy. Furthermore, there was a linear relationship between serum creatinine and oral clearance of pyrazinoic acid. Simulations indicated that increasing doses from 25 mg/kg of body weight to 35 mg/kg and 50 mg/kg in females and males, respectively, would result in adequate exposure with regard to suggested thresholds and increase probability of target attainment to >0.9 for a MIC of 25 mg/liter. Further, lowering the dose by 40% in patients with high serum creatinine would prevent accumulation of toxic metabolites. Individualized dosing is proposed to decrease variability in exposure to pyrazinamide and its metabolites. Reducing the variability in exposure may lower the risk of treatment failure and resistance development.
               
Click one of the above tabs to view related content.