LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Validation of a High-Resolution Melting Assay To Detect Azole Resistance in Aspergillus fumigatus

Photo from wikipedia

ABSTRACT The global emergence of azole-resistant Aspergillus fumigatus strains is a growing public health concern. Different patterns of azole resistance are linked to mutations in cyp51A. Therefore, accurate characterization of… Click to show full abstract

ABSTRACT The global emergence of azole-resistant Aspergillus fumigatus strains is a growing public health concern. Different patterns of azole resistance are linked to mutations in cyp51A. Therefore, accurate characterization of the mechanisms underlying azole resistance is critical to guide selection of the most appropriate antifungal agent for patients with aspergillosis. This study describes a new sequencing-free molecular screening tool for early detection of the most frequent mutations known to be associated with azole resistance in A. fumigatus. PCRs targeting cyp51A mutations at positions G54, Y121, G448, and M220 and targeting different tandem repeats (TRs) in the promoter region were designed. All PCRs were performed simultaneously, using the same cycling conditions. Amplicons were then distinguished using a high-resolution melting assay. For standardization, 30 well-characterized azole-resistant A. fumigatus strains were used, yielding melting curve clusters for different resistance mechanisms for each target and allowing detection of the most frequent azole resistance mutations, i.e., G54E, G54V, G54R, G54W, Y121F, M220V, M220I, M220T, M220K, and G448S, and the tandem repeats TR34, TR46, and TR53. Validation of the method was performed using a blind panel of 80 A. fumigatus azole-susceptible or azole-resistant strains. All strains included in the blind panel were properly classified as susceptible or resistant with the developed method. The implementation of this screening method can reduce the time needed for the detection of azole-resistant A. fumigatus isolates and therefore facilitate selection of the best antifungal therapy in patients with aspergillosis.

Keywords: fumigatus; aspergillus fumigatus; azole resistant; resistance; azole resistance

Journal Title: Antimicrobial Agents and Chemotherapy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.