LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Activity of Cefepime-Taniborbactam and Comparators against Clinical Isolates of Gram-Negative Bacilli from 2018 to 2020: Results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program

Photo by robbie36 from unsplash

Taniborbactam is a novel cyclic boronate β-lactamase inhibitor in clinical development in combination with cefepime. We assessed the in vitro activity of cefepime-taniborbactam and comparators against a 2018–2020 collection of… Click to show full abstract

Taniborbactam is a novel cyclic boronate β-lactamase inhibitor in clinical development in combination with cefepime. We assessed the in vitro activity of cefepime-taniborbactam and comparators against a 2018–2020 collection of Enterobacterales (n = 13,731) and Pseudomonas aeruginosa (n = 4,619) isolates cultured from infected patients attending hospitals in 56 countries. ABSTRACT Taniborbactam is a novel cyclic boronate β-lactamase inhibitor in clinical development in combination with cefepime. We assessed the in vitro activity of cefepime-taniborbactam and comparators against a 2018–2020 collection of Enterobacterales (n = 13,731) and Pseudomonas aeruginosa (n = 4,619) isolates cultured from infected patients attending hospitals in 56 countries. MICs were determined by CLSI broth microdilution. Taniborbactam was tested at a fixed concentration of 4 μg/mL. Isolates with cefepime-taniborbactam MICs of ≥16 μg/mL underwent whole-genome sequencing. β-lactamase genes were identified in meropenem-resistant isolates by PCR/Sanger sequencing. Against Enterobacterales, taniborbactam reduced the cefepime MIC90 value by >64-fold (from >16 to 0.25 μg/mL). At ≤16 μg/mL, cefepime-taniborbactam inhibited 99.7% of all Enterobacterales isolates; >97% of isolates with multidrug-resistant (MDR) and ceftolozane-tazobactam-resistant phenotypes; ≥90% of isolates with meropenem-resistant, difficult-to-treat-resistant (DTR), meropenem-vaborbactam-resistant, and ceftazidime-avibactam-resistant phenotypes; 100% of VIM-positive, AmpC-positive, and KPC-positive isolates; 98.7% of extended-spectrum β-lactamase (ESBL)-positive; 98.8% of OXA-48-like-positive; and 84.6% of NDM-positive isolates. Against P. aeruginosa, taniborbactam reduced the cefepime MIC90 value by 4-fold (from 32 to 8 μg/mL). At ≤16 μg/mL, cefepime-taniborbactam inhibited 97.4% of all P. aeruginosa isolates; ≥85% of isolates with meropenem-resistant, MDR, and meropenem-vaborbactam-resistant phenotypes; >75% of isolates with DTR, ceftazidime-avibactam-resistant, and ceftolozane-tazobactam-resistant phenotypes; and 87.4% of VIM-positive isolates. Multiple potential mechanisms, including carriage of IMP, certain alterations in PBP3, permeability (porin) defects, and possibly, upregulation of efflux were present in most isolates with cefepime-taniborbactam MICs of ≥16 μg/mL. We conclude that cefepime-taniborbactam exhibited potent in vitro activity against Enterobacterales and P. aeruginosa and inhibited most carbapenem-resistant isolates, including those carrying serine carbapenemases or NDM/VIM metallo-β-lactamases (MBLs).

Keywords: activity cefepime; vitro activity; taniborbactam; cefepime taniborbactam

Journal Title: Antimicrobial Agents and Chemotherapy
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.