LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transferable Multidrug-Resistance Plasmid Carrying a Novel Macrolide-Clindamycin Resistance Gene, erm(50), in Cutibacterium acnes

Photo from wikipedia

Antimicrobial-resistant Cutibacterium acnes strains have emerged and disseminated throughout the world. The 23S rRNA mutation and erm(X) gene are known as the major resistance determinants of macrolides and clindamycin in… Click to show full abstract

Antimicrobial-resistant Cutibacterium acnes strains have emerged and disseminated throughout the world. The 23S rRNA mutation and erm(X) gene are known as the major resistance determinants of macrolides and clindamycin in C. acnes. We isolated eight high-level macrolide-clindamycin-resistant C. acnes strains with no known resistance determinants, such as 23S rRNA mutation and erm(X), from different acne patients in 2008 between 2013 and 2015. ABSTRACT Antimicrobial-resistant Cutibacterium acnes strains have emerged and disseminated throughout the world. The 23S rRNA mutation and erm(X) gene are known as the major resistance determinants of macrolides and clindamycin in C. acnes. We isolated eight high-level macrolide-clindamycin-resistant C. acnes strains with no known resistance determinants, such as 23S rRNA mutation and erm(X), from different acne patients in 2008 between 2013 and 2015. The aim of this study was to identify the novel mechanisms of resistance in C. acnes. Whole-genome sequencing revealed the existence of a plasmid DNA, denoted pTZC1 (length, 31,440 bp), carrying the novel macrolide-clindamycin resistance gene erm(50) and tetracycline resistance gene tet(W). pTZC1 was detected in all C. acnes isolates (eight strains) exhibiting high-level macrolide-clindamycin resistance, with no known resistance determinants (MIC of clarithromycin, ≥256 μg/ml; clindamycin, ≥256 μg/ml). Transconjugation experiments demonstrated that the pTZC1 was horizontally transferred among C. acnes strains and conferred resistance to macrolides, clindamycin, and tetracyclines. Our data showed, for the first time, the existence of a transferable multidrug-resistant plasmid in C. acnes. Increased prevalence of this plasmid will be a great threat to antimicrobial therapy for acne vulgaris.

Keywords: acnes strains; resistance determinants; macrolide clindamycin; resistance; gene; cutibacterium acnes

Journal Title: Antimicrobial Agents and Chemotherapy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.