LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Multi-Enzyme Cascade for Efficient Production of Pyrrolidone from l-Glutamate

Photo by karsten116 from unsplash

This study developed a three-enzyme cascade pathway for the production of pyrrolidone from l-Glu. The catalytic efficiency of carnitine CoA ligase from Escherichia coli (EcCaiC) was improved by mechanism-based protein… Click to show full abstract

This study developed a three-enzyme cascade pathway for the production of pyrrolidone from l-Glu. The catalytic efficiency of carnitine CoA ligase from Escherichia coli (EcCaiC) was improved by mechanism-based protein engineering, and the titer of pyrrolidone was further increased by ribosome-binding site (RBS), induction conditions, and conversion conditions optimization. ABSTRACT Pyrrolidone is a high value-added monomer and an important active drug intermediate. However, the efficient enzymatic synthesis of pyrrolidone remains a challenge. Here, we developed and reconstructed a three-enzyme cascade pathway using Escherichia coli BL21(DE3) for the production of pyrrolidone from l-glutamate (l-Glu). The carnitine-CoA ligase from Escherichia coli (EcCaiC) at a low expression level and with a low activity is regarded as the rate-limiting enzyme. Here, we obtained the best EcCaiCF380M/N430D double mutant with a kcat/Km value 1.5 times higher than that of the wild type via mechanism-based protein engineering. For this, we (i) eliminated the steric hindrance of the loop ring to improve the precatalytic conformation of the adenylation intermediate and (ii) fixed the hinge region to stabilize the closed conformation of the enzyme. Furthermore, ribosome-binding site (RBS) optimization led to an increase in the expression level of EcCaiCF380M/N430D, which was then cloned into the plasmid pET-EcCaiCF380M/N430D-DegoPPK2. Finally, under optimal induction and transformation conditions, 16.62 g/L of pyrrolidone was generated from 30 g/L l-Glu (batch feeding) within 24 h with a molar conversion rate of 95.2% and the highest productivity ever obtained, to our knowledge (0.69 g/L/h). Our findings demonstrate a strategy that is potentially attractive for the industrial production of pyrrolidone. IMPORTANCE This study developed a three-enzyme cascade pathway for the production of pyrrolidone from l-Glu. The catalytic efficiency of carnitine CoA ligase from Escherichia coli (EcCaiC) was improved by mechanism-based protein engineering, and the titer of pyrrolidone was further increased by ribosome-binding site (RBS), induction conditions, and conversion conditions optimization. Finally, we efficiently produced pyrrolidone by one pot in vivo with 95.2% conversion and 0.69 g/L/h productivity. Our study provides a new possibility for the industrial production of enzymatic synthesis of pyrrolidone.

Keywords: enzyme cascade; pyrrolidone glutamate; escherichia coli; pyrrolidone; production; production pyrrolidone

Journal Title: Applied and Environmental Microbiology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.