LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous Anaerobic and Aerobic Ammonia and Methane Oxidation under Oxygen Limitation Conditions

Photo from wikipedia

Nitrogen in wastewater leads to eutrophication of the receiving water bodies, and methane is a potent greenhouse gas; it is therefore important that these are removed from wastewater. A potential… Click to show full abstract

Nitrogen in wastewater leads to eutrophication of the receiving water bodies, and methane is a potent greenhouse gas; it is therefore important that these are removed from wastewater. A potential solution for the simultaneous removal of nitrogenous compounds and methane is the application of a combination of nitrite/nitrate-dependent methane oxidation (N-damo) and anaerobic ammonium oxidation (annamox). ABSTRACT Methane and ammonia have to be removed from wastewater treatment effluent in order to discharge it to receiving water bodies. A potential solution for this is a combination of simultaneous ammonia and methane oxidation by anaerobic ammonia oxidation (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-damo) microorganisms. When applied, these microorganisms will be exposed to oxygen, but little is known about the effect of a low concentration of oxygen on a culture containing these microorganisms. In this study, a stable coculture containing anammox and N-damo microorganisms in a laboratory scale bioreactor was established under oxygen limitation. Membrane inlet mass spectrometry (MIMS) was used to directly measure the in situ simultaneous activity of N-damo, anammox, and aerobic ammonia-oxidizing microorganisms. In addition, batch tests revealed that the bioreactor also harbored aerobic methanotrophs and anaerobic methanogens. Together with fluorescence in situ hybridization (FISH) analysis and metagenomics, these results indicate that the combination of N-damo and anammox activity under the continuous supply of limiting oxygen concentrations is feasible and can be implemented for the removal of methane and ammonia from anaerobic digester effluents. IMPORTANCE Nitrogen in wastewater leads to eutrophication of the receiving water bodies, and methane is a potent greenhouse gas; it is therefore important that these are removed from wastewater. A potential solution for the simultaneous removal of nitrogenous compounds and methane is the application of a combination of nitrite/nitrate-dependent methane oxidation (N-damo) and anaerobic ammonia oxidation (annamox). In order to do so, it is important to investigate the effect of oxygen on these two anaerobic processes. In this study, we investigate the effect of a continuous oxygen supply on the activity of an anaerobic methane- and ammonia-oxidizing coculture. The findings presented in this study are important for the potential application of these two microbial processes in wastewater treatment.

Keywords: oxidation; ammonia methane; damo; methane; methane oxidation

Journal Title: Applied and Environmental Microbiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.