Burkholderia cenocepacia is an important opportunistic pathogen which can cause life-threatening infections in susceptible individuals, particularly in cystic fibrosis and immunocompromised patients. It usually employs two types of quorum sensing… Click to show full abstract
Burkholderia cenocepacia is an important opportunistic pathogen which can cause life-threatening infections in susceptible individuals, particularly in cystic fibrosis and immunocompromised patients. It usually employs two types of quorum sensing (QS) systems, including the cis-2-dodecenoic acid (BDSF) system and N-acyl homoserine lactone (AHL) system, to regulate virulence. In this study, we have designed and identified an unsaturated fatty acid compound (cis-14-methylpentadec-2-enoic acid [14-Me-C16:Δ2]) that is capable of interfering with B. cenocepacia QS signaling and virulence. We demonstrate that 14-Me-C16:Δ2 reduced BDSF and AHL signal production in B. cenocepacia. It also impaired QS-regulated phenotypes in various Burkholderia species. These results suggest that 14-Me-C16:Δ2 could interfere with QS signaling in many Burkholderia species and might be developed as a new antibacterial agent. ABSTRACT Quorum sensing (QS) signals are widely used by bacterial pathogens to control biological functions and virulence in response to changes in cell population densities. Burkholderia cenocepacia employs a molecular mechanism in which the cis-2-dodecenoic acid (named Burkholderia diffusible signal factor [BDSF]) QS system regulates N-acyl homoserine lactone (AHL) signal production and virulence by modulating intracellular levels of cyclic diguanosine monophosphate (c-di-GMP). Thus, inhibition of BDSF signaling may offer a non-antibiotic-based therapeutic strategy against BDSF-regulated bacterial infections. In this study, we report the synthesis of small-molecule mimics of the BDSF signal and evaluate their ability to inhibit BDSF QS signaling in B. cenocepacia. A novel structural analogue of BDSF, 14-Me-C16:Δ2 (cis-14-methylpentadec-2-enoic acid), was observed to inhibit BDSF production and impair BDSF-regulated phenotypes in B. cenocepacia, including motility, biofilm formation, and virulence, while it did not inhibit the growth rate of this pathogen. 14-Me-C16:Δ2 also reduced AHL signal production. Genetic and biochemical analyses showed that 14-Me-C16:Δ2 inhibited the production of the BDSF and AHL signals by decreasing the expression of their synthase-encoding genes. Notably, 14-Me-C16:Δ2 attenuated BDSF-regulated phenotypes in various Burkholderia species. These findings suggest that 14-Me-C16:Δ2 could potentially be developed as a new therapeutic agent against pathogenic Burkholderia species by interfering with their QS signaling. IMPORTANCE Burkholderia cenocepacia is an important opportunistic pathogen which can cause life-threatening infections in susceptible individuals, particularly in cystic fibrosis and immunocompromised patients. It usually employs two types of quorum sensing (QS) systems, including the cis-2-dodecenoic acid (BDSF) system and N-acyl homoserine lactone (AHL) system, to regulate virulence. In this study, we have designed and identified an unsaturated fatty acid compound (cis-14-methylpentadec-2-enoic acid [14-Me-C16:Δ2]) that is capable of interfering with B. cenocepacia QS signaling and virulence. We demonstrate that 14-Me-C16:Δ2 reduced BDSF and AHL signal production in B. cenocepacia. It also impaired QS-regulated phenotypes in various Burkholderia species. These results suggest that 14-Me-C16:Δ2 could interfere with QS signaling in many Burkholderia species and might be developed as a new antibacterial agent.
               
Click one of the above tabs to view related content.