LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase

Photo from wikipedia

Alcohol dehydrogenases are a group of enzymes found in many organisms. Unfortunately, studies on these enzymes mainly focus on their activities toward short-chain alcohols. ABSTRACT Alkanes produced by microorganisms are… Click to show full abstract

Alcohol dehydrogenases are a group of enzymes found in many organisms. Unfortunately, studies on these enzymes mainly focus on their activities toward short-chain alcohols. ABSTRACT Alkanes produced by microorganisms are expected to be an alternative to fossil fuels as an energy source. Microbial synthesis of alkanes involves the formation of fatty aldehydes via fatty acyl coenzyme A (acyl-CoA) intermediates derived from fatty acid metabolism, followed by aldehyde decarbonylation to generate alkanes. Advancements in metabolic engineering have enabled the construction of such pathways in various microorganisms, including Escherichia coli. However, endogenous aldehyde reductases in the host microorganisms are highly active in converting fatty aldehydes to fatty alcohols, limiting the substrate pool for alkane production. To reuse the alcohol by-product, a screening of fatty alcohol-assimilating microorganisms was conducted, and a bacterial strain, Pantoea sp. strain 7-4, was found to convert 1-tetradecanol to tetradecanal. From this strain, an alcohol dehydrogenase, PsADH, was purified and found to be involved in 1-tetradecanol-oxidizing reaction. Subsequent heterologous expression of the PsADH gene in E. coli was conducted, and recombinant PsADH was purified for a series of biochemical characterizations, including cofactors, optimal reaction conditions, and kinetic parameters. Furthermore, direct alkane production from alcohol was achieved in E. coli by coexpressing PsADH with a cyanobacterial aldehyde-deformylating oxygenase and a reducing system, including ferredoxin and ferredoxin reductase, from Nostoc punctiforme PCC73102. The alcohol-aldehyde-alkane synthetic route established in this study will provide a new approach to utilizing fatty alcohols for the production of alkane biofuel. IMPORTANCE Alcohol dehydrogenases are a group of enzymes found in many organisms. Unfortunately, studies on these enzymes mainly focus on their activities toward short-chain alcohols. In this study, we discovered an alcohol dehydrogenase, PsADH, from the bacterium Pantoea sp. 7-4, which can oxidize 1-tetradecanol to tetradecanal. The medium-chain aldehyde products generated by this enzyme can serve as the substrate of aldehyde-deformylating oxygenase to produce alkanes. The enzyme found in this study can be applied to the biosynthetic pathway involving the formation of medium-chain aldehydes to produce alkanes and other valuable compounds.

Keywords: alcohol dehydrogenase; fatty alcohol; alcohol; alkane; chain

Journal Title: Applied and Environmental Microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.