LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improvement of Euglena gracilis Paramylon Production through a Cocultivation Strategy with the Indole-3-Acetic Acid-Producing Bacterium Vibrio natriegens

Photo by timothycdykes from unsplash

Euglena gracilis has attracted special interest due to its ability to excessively accumulate paramylon. Paramylon is a linear β-1,3-glucan polysaccharide that is the principal polymer for energy storage in E.… Click to show full abstract

Euglena gracilis has attracted special interest due to its ability to excessively accumulate paramylon. Paramylon is a linear β-1,3-glucan polysaccharide that is the principal polymer for energy storage in E. gracilis. The polysaccharide features high bioactive functionality in the immune system. This study explored a new method to enhance the production of paramylon by E. gracilis, through cocultivation with the indole-3-acetic acid-producing bacterium Vibrio natriegens. The enhanced production was achieved indirectly with the phytohormone-producing bacteria, instead of direct application of the hormone. The knowledge obtained in this study furthers the understanding of the effects of V. natriegens on the growth and physiology of E. gracilis. ABSTRACT We investigated the putative effects on the growth and paramylon production of Euglena gracilis of cocultivation with Vibrio natriegens. E. gracilis heterotrophically cocultivated with V. natriegens displayed significant increases in biomass productivity and paramylon content. In addition, the effects of the bacterial inoculum density and the timing of inoculation on the growth of E. gracilis were examined, to determine the optimal conditions for cocultivation. With the optimal deployment of V. natriegens, biomass productivity and paramylon content were increased by more than 20% and 35%, respectively, compared to those in axenic E. gracilis cultures. Interestingly, indole-3-acetic acid biosynthesized by V. natriegens was responsible for these enhancements of E. gracilis. The morphology of cocultured E. gracilis cells was assessed. Paramylon granules extracted from the cocultivation were significantly larger than those from axenic culture. Our study showed that screening for appropriate bacteria and subsequent cocultivation with E. gracilis represented an effective way to enhance biomass and metabolite production. IMPORTANCE Euglena gracilis has attracted special interest due to its ability to excessively accumulate paramylon. Paramylon is a linear β-1,3-glucan polysaccharide that is the principal polymer for energy storage in E. gracilis. The polysaccharide features high bioactive functionality in the immune system. This study explored a new method to enhance the production of paramylon by E. gracilis, through cocultivation with the indole-3-acetic acid-producing bacterium Vibrio natriegens. The enhanced production was achieved indirectly with the phytohormone-producing bacteria, instead of direct application of the hormone. The knowledge obtained in this study furthers the understanding of the effects of V. natriegens on the growth and physiology of E. gracilis.

Keywords: indole acetic; cocultivation; euglena gracilis; production; paramylon; gracilis

Journal Title: Applied and Environmental Microbiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.