LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Leishmania donovani Metacyclic Promastigotes Impair Phagosome Properties in Inflammatory Monocytes

Photo by jontyson from unsplash

Leishmaniasis, a debilitating disease with clinical manifestations ranging from self-healing ulcers to life-threatening visceral pathologies, is caused by protozoan parasites of the Leishmania genus. These professional vacuolar pathogens are transmitted… Click to show full abstract

Leishmaniasis, a debilitating disease with clinical manifestations ranging from self-healing ulcers to life-threatening visceral pathologies, is caused by protozoan parasites of the Leishmania genus. These professional vacuolar pathogens are transmitted by infected sand flies to mammalian hosts as metacyclic promastigotes and are rapidly internalized by various phagocyte populations. ABSTRACT Leishmaniasis, a debilitating disease with clinical manifestations ranging from self-healing ulcers to life-threatening visceral pathologies, is caused by protozoan parasites of the Leishmania genus. These professional vacuolar pathogens are transmitted by infected sand flies to mammalian hosts as metacyclic promastigotes and are rapidly internalized by various phagocyte populations. Classical monocytes are among the first myeloid cells to migrate to infection sites. Recent evidence shows that recruitment of these cells contributes to parasite burden and the establishment of chronic disease. However, the nature of Leishmania-inflammatory monocyte interactions during the early stages of host infection has not been well investigated. Here, we aimed to assess the impact of Leishmania donovani metacyclic promastigotes on antimicrobial responses within these cells. Our data showed that inflammatory monocytes are readily colonized by L. donovani metacyclic promastigotes, while infection with Escherichia coli is efficiently cleared. Upon internalization, metacyclic promastigotes inhibited superoxide production at the parasitophorous vacuole (PV) through a mechanism involving exclusion of NADPH oxidase subunits gp91phox and p47phox from the PV membrane. Moreover, we observed that unlike phagosomes enclosing zymosan particles, vacuoles containing parasites acidify poorly. Interestingly, whereas the parasite surface coat virulence glycolipid lipophosphoglycan (LPG) was responsible for the inhibition of PV acidification, impairment of the NADPH oxidase assembly was independent of LPG and GP63. Collectively, these observations indicate that permissiveness of inflammatory monocytes to L. donovani may thus be related to the ability of this parasite to impair the microbicidal properties of phagosomes.

Keywords: promastigotes impair; impair phagosome; leishmania donovani; donovani metacyclic; metacyclic promastigotes; inflammatory monocytes

Journal Title: Infection and Immunity
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.