LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of the Hypothetical Protein BB0563 during Borrelia burgdorferi Infection in Animals

Photo by cdc from unsplash

The alternative sigma factor RpoS in Borrelia burgdorferi, the etiological agent of Lyme disease, has long been postulated to regulate virulence-associated genes other than ospC and dbpA. Here, we demonstrate… Click to show full abstract

The alternative sigma factor RpoS in Borrelia burgdorferi, the etiological agent of Lyme disease, has long been postulated to regulate virulence-associated genes other than ospC and dbpA. Here, we demonstrate that bb0563, a gene encoding a hypothetical protein, is regulated by RpoS and contributes to the optimal infectivity of B. burgdorferi. ABSTRACT The alternative sigma factor RpoS in Borrelia burgdorferi, the etiological agent of Lyme disease, has long been postulated to regulate virulence-associated genes other than ospC and dbpA. Here, we demonstrate that bb0563, a gene encoding a hypothetical protein, is regulated by RpoS and contributes to the optimal infectivity of B. burgdorferi. When B. burgdorferi was exposed to environmental stimuli, bb0563 showed similar expression patterns as rpoS, ospC, and dbpA. Expression of bb0563 was significantly downregulated when rpoS was inactivated and was restored in the complemented strain. By using rapid amplification of cDNA ends (RACE) and luciferase reporter assays, a functional promoter was identified in the regulatory region upstream of bb0563. Gene expression from this promoter was drastically decreased in the rpoS mutant. We next investigated the role of bb0563 during animal infection. By using quantitative reverse transcription-PCR (RT-PCR), we found that bb0563 was highly expressed in mouse tissues during infection. We further created a bb0563-deficient mutant in a bioluminescent B. burgdorferi strain and examined infection dynamics using in vivo imaging. Relative to the parental and complemented strains, the mutant showed a delayed infection pattern and bacterial load was reduced. Another bb0563 deletion mutant was also created in the strain 297 background, and quantitative PCR (qPCR) analysis revealed a significantly lower spirochetal burden in tissue samples collected from animals infected with the mutant. In addition, localization studies indicate that BB0563 is not exposed on the cell surface but is associated with outer membrane. Taken together, these results suggest that bb0563 is required for optimal infectivity of B. burgdorferi during experimental infection.

Keywords: burgdorferi; infection; bb0563; borrelia burgdorferi; hypothetical protein

Journal Title: Infection and Immunity
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.