Platelets are known for essential activities in hemostasis and for their important contribution to protection against infectious pathogens. Klebsiella pneumoniae is an opportunistic pathogen widely known to cause nosocomial infections.… Click to show full abstract
Platelets are known for essential activities in hemostasis and for their important contribution to protection against infectious pathogens. Klebsiella pneumoniae is an opportunistic pathogen widely known to cause nosocomial infections. Recently, hypervirulent strains of K. pneumoniae have been emerging, which can cause severe infections in immunocompetent individuals. ABSTRACT Platelets are known for essential activities in hemostasis and for their important contribution to protection against infectious pathogens. Klebsiella pneumoniae is an opportunistic pathogen widely known to cause nosocomial infections. Recently, hypervirulent strains of K. pneumoniae have been emerging, which can cause severe infections in immunocompetent individuals. Combined with the increase in antibiotic resistance, it is important to understand how K. pneumoniae affects components of the immune system. We studied the interactions of human platelets with several K. pneumoniae strains (the wild type encapsulated strain, and a nonencapsulated mutant). Thrombin-stimulated whole human and mouse blood significantly inhibited bacterial growth compared to unstimulated whole blood. Furthermore, we investigated the effect of K. pneumoniae on platelet activation. Both strains induced significant increase in activation of both unstimulated and thrombin-stimulated human platelets. Additionally, only the nonencapsulated mutant increased aggregation of platelets in response to ADP. K. pneumoniae killing assays were then performed with washed platelets in the presence or absence of thrombin. Surprisingly, washed platelets failed to exhibit any effects on the growth of K. pneumoniae. We further explored the impact of platelets on monocyte-mediated killing of K. pneumoniae. Importantly, we found that activated platelets significantly enhanced monocyte-mediated killing of K. pneumoniae. This effect was likely due to the formation of platelet-monocyte aggregates in blood upon thrombin stimulation. Overall, this study highlights the role of platelets in mediating a protective response against K. pneumoniae and reinforces the importance of platelets in modulating leukocyte behavior.
               
Click one of the above tabs to view related content.